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Scale-Space Derived From B-Splines
Yu-Ping Wang and S.L. Lee

Abstract—It is well-known that the linear scale-space theory in computer vision is mainly based on the Gaussian kernel. The
purpose of the paper is to propose a scale-space theory based on B-spline kernels. Our aim is twofold. On one hand, we present a
general framework and show how B-splines provide a flexible tool to design various scale-space representations: continuous scale-
space, dyadic scale-space frame, and compact scale-space representation. In particular, we focus on the design of continuous
scale-space and dyadic scale-space frame representation. A general algorithm is presented for fast implementation of continuous
scale-space at rational scales. In the dyadic case, efficient frame algorithms are derived using B-spline techniques to analyze the
geometry of an image. Moreover, the image can be synthesized from its multiscale local partial derivatives. Also, the relationship
between several scale-space approaches is explored. In particular, the evolution of wavelet theory from traditional scale-space
filtering can be well understood in terms of B-splines. On the other hand, the behavior of edge models, the properties of
completeness, causality, and other properties in such a scale-space representation are examined in the framework of B-splines. It is
shown that, besides the good properties inherited from the Gaussian kernel, the B-spline derived scale-space exhibits many
advantages for modeling visual mechanism with regard to the efficiency, compactness, orientation feature, and parallel structure.

Index Terms—Image modeling, B-spline, wavelet, scale-space, scaling theorem, fingerprint theorem.
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1 INTRODUCTION

CALE is a fundamental aspect of early image representa-
tion. Koenderink [1] emphasized that the problem of

scale must be faced in any imaging situation. A multiscale
representation is of crucial importance if one aims at de-
scribing the structure of the world. Both the psychophysical
and physiological experiments have confirmed that mul-
tiscale transformed information appears in the visual cortex
of mammals. This leads to the motivation for the interpre-
tation of image structures in terms of spatial scale in com-
puter vision. Some researchers such as Burt and Adelson
[6], Koenderink [1], Marr and Hildreth [10], Witkin [11], and
Rosenfeld and Thurston [2] had exposed the necessity and
advantages of using operators of different sizes for extract-
ing multiscale information in an image. For a more detailed
review, see [3].

The Gaussian scale-space approach of a signal as intro-
duced by Witkin [11], is an embedding of the original signal
into a one-parameter family of derived signal constructed by
convolution with Gaussian kernels of increasing width. One
reason the traditional scale-space is mainly based on the
Gaussian kernel is that the Gaussian function is the unique
kernel which satisfies the causality property as guaranteed
by the scaling theorem [14], [15], [16], [19]; it states that no
new feature points are created with increasing scale. Another
reason is that the response of the human retina resembles a
Gaussian function. Neurophysiological research by Young
[22] has shown that there are receptive field profiles in the
mammalian retina and visual cortex whose measured re-

sponse profiles can be well modeled by superposition of
Gaussian derivatives. Therefore, the Gaussian function is
suitable for modeling the human visual system.

In practice, since the computational load becomes ex-
tremely heavy when the scale gets larger, many techniques
are proposed for efficient implementation of scale-space fil-
tering. Among them, B-splines or binomials have been
widely used to approximate the Gaussian kernel. Such ex-
amples include, Wells [5], Ferrari et al. [8], [9], Poggio et al.
[20], Unser et al. [25], [26], etc. For a more compact represen-
tation, the pyramid technique is another widely used repre-
sentation that combines the subsampling operation with a
smoothing step. Historically, they have yielded important
steps toward the scale-space theory. The low-pass pyramid
representation proposed by Burt [6], [7] is a famous example,
which is also closely related to B-spline techniques.

The general idea of representing a signal at multiple
scales is not new to us. It is through wavelet theory that
these early ideas have been well formulated and refined. In
fact, this is largely due to the contribution of B-spline tech-
niques. As will be shown later, the orthogonal multiresolu-
tion pyramid originally proposed by Mallat [40] and the
biorthogonal pyramid [28], [45], [46] in wavelet theory can
all be derived from B-splines [30], [33], [36]. Other types of
wavelets such as the wavelets on an interval [47], the peri-
odic wavelets [37], and the cardinal spline wavelets [29] are
all related to B-splines.

Motivated by these observations, the purpose of this pa-
per is to build a more general framework of scale-space
representation in the context of B-splines as an improve-
ment of the traditional scale-space theory. By and large, the
paper is divided into two parts. Firstly, we present a sys-
tematic development of the scale-space representation in
the framework of B-splines. In particular, we focus on two
classes of scale-space design. It is shown that if an image is
represented as a B-spline surface, efficient subdivision algo-
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rithm can be designed to give a geometric description at
varying degrees of detail. The various scale-space repre-
sentations are derived from B-splines in different forms. For
continuous scale-space representation, a general algorithm
is derived for fast and parallel implementation at rational
scales. Several classical fast algorithms are shown to be spe-
cial cases under some conditions. Differential operators
have been used for multiscale geometric description of an
image. However, it is not clear whether an image can be
synthesized from these differential descriptors. Using B-
spline techniques, frame algorithms are designed to express
the image as combinations of multiscale local partial de-
rivatives. These operators include the gradient operator,
second directional operator, Laplacian operator, and ori-
ented operators. At the same time, the intrinsic relationship
between wavelet theory and the traditional linear scale-
space approach is exhibited. Although B-spline has been
used in practice in place of Gaussian, there is little effort to
consider its scale-space behavior directly. Therefore, the
second part of the paper is devoted to examining the prop-
erties of B-spline derived scale-space. In particular, the ad-
vantages of such a scale-space representation are high-
lighted. It was shown that the B-spline derived scale-space
inherits most of the nice properties of the Gaussian-derived
scale-space. Nevertheless, the B-spline kernel outperforms
the Gaussian kernel in that it can provide more meaningful,
efficient, and flexible description of image information for
multiscale feature extraction.

The organization of the paper is as follows. In Section 2,
some fundamental properties of B-splines are reviewed,
which also explain why a B-spline kernel is a good kernel
for scale-space design. Following this section, we catego-
rize three types of scale-space representation. In particu-
lar, we focus on the design of continuous scale-space and
dyadic scale-space frame representation. The relation with
compact scale-space is discussed. From the viewpoint of
B-splines the evolution of wavelets from classical continu-
ous scale-space is well understood. Moreover, the equiva-
lence of several famous scale-space methods is explored.
In Section 4, a general procedure is presented to study the
edge models in the B-spline scale-space. In Section 5, some
basic properties of the B-spline derived scale-space are
investigated in parallel with that of the Gaussian-derived
scale-space. These include the completeness property, cau-
sality property, orientation feature, and so on. Conclusions
are given in Section 6. Finally, Appendix A and Appendix
B are given in order to make the paper mathematically
complete.

2 B-SPLINE KERNELS

2.1 Notations and Definitions
We adopt the convention of [25]. Let L2(R) be the Hilbert
space of measurable, square integrable functions on R and
l2(Z) be the vector space of square summable sequences. We
denote the central continuous B-spline of order n by bn(x),
which can be generated by repeated n + 1 convolution of a
B-spline of order zero,

β β β β β βn n

n
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For an integer m ≥ 1, βm
n x0 5  is defined as the nth-order

continuous B-spline dilated by a scale factor m, i.e.,
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The discrete B-spline of order n at scale m is defined as
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where Bm m
0 1 1 1 1= , , . . . ,  is a normalized sampled pulse of

width m.
The discrete sampled B-spline b km

n 1 6  of order n and inte-
ger coarseness m ≥ 1 is obtained by directly sampling the
nth-order continuous B-spline at the scale m:

b k m
k
m km

n n1 6 =
�
��
�
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1
β , Z.                         (5)

We write b bn n
1 = . Consequently, the frequency response of

the directly sampled B-spline is an aliased version of the
frequency response of the continuous B-spline, since
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which is due to the Possion’s summation formula.
The discrete convolution between two sequences a and b

in l2(Z) is the sequence b * a:

b a k b k l a l k
l

∗ = − ∀ ∈
=−∞

∞

∑1 6 1 6 1 6, Z.                  (7)

Under this definition, the convolution is commutative. The
convolution inverse (b)-1 of a sequence b is defined by

((b)-1 
* b)(k) = d (k),    "k Œ Z,                       (8)

where d (k) is the unit impulse whose value is one at zero
and zero elsewhere.

The decimation operation [b]Øm down-samples the se-
quence b by the integer factor m, i.e.,

[b]Øm(k) = b(mk),    "k Œ Z.                       (9)

Conversely, the operator [b]≠m up-samples by the integer
factor m, i.e., it takes a discrete signal b and expands it by
padding m - 1 zeros between consecutive samples:

b k b k k mk
otherwisem� ′ = ′ =%&'1 6 1 6

0
                       (10)

2.2 The Similarity Between Gaussian and B-Spline
B-splines are good approximations of the Gaussian kernel
which is commonly used in computer vision. This is the
consequence of the central limit theorem. For a review of
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the B-spline window and other famous filters, see Torachi
et al. [39]. In [28], Unser et al. have presented a more gen-
eral proof that B-splines converge to the Gaussian function
in Lp(R), "p Œ [2, +•) as the order of the spline n tends to
infinity. Since the variance of the nth order of B-spline is
n+1
12 , the approximation relation is as follows:

β
π

n x
n
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+
− +
�
��

�
��

6
1

6
1

2

exp .                     (11)

Furthermore, by numerical computation [28], it was
shown that the cubic B-spline is already near optimal in
terms of time/frequency localization, in the sense that its
variance product is within 2 percent of the limit specified
by the uncertainty principle. A graphical comparison
between the Gaussian kernel and the cubic B-spline is
given in Fig. 1. Moreover, both the physiological and
biological experiments [22] have shown that the human
visual system can be modeled with the Gaussian kernel.
Therefore, B-splines are also suitable for modeling bio-
logical vision due to their close approximation to the
Gaussian kernel.

2.3 Stable Hierarchical Representation of a Signal by
B-Splines

Another significant property of the B-spline of a given or-
der n is that it is the unique compactly supported refinable
spline function of order n which can provide a stable hier-
archical representation of a signal at different scales. It has
been proven [38] that a compactly supported spline is m-
refinable and stable if and only if it is a shifted B-spline. Let
h > 0 and define the polynomial spline space Sh

n  consisting
of the dilated and shifted B-splines of order n (n is odd,
which we will assume throughout the paper) by
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and
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The embedding property (13) follows from the fact that the
B-spline bn(x) is m-refinable, i.e., it satisfies the following m-
scale relation,

1
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The m-refinability of the B-splines can be easily verified [29],
[38]. It also establishes the intrinsic relationship between the
continuous B-spline and discrete B-spline. If we take m = 2, it
is just the commonly used two-scale relation and B kn

2 1 6 is the
discrete binomial. Olkkonen [52] has used the binomial ker-
nels for designing multiresolution wavelet bases.

From the m-scale relation (15), we can also establish the
relationship between the discrete sampled B-spline and the
discrete B-spline:

b k B b k km
n

m
n n1 6 1 6= ∗ ∀ ∈, Z .                   (16)

Since B-splines provide a stable multiresolution repre-
sentation of a signal at multiple scales, it is preferable to
select B-splines as smoothing kernels to extract multiscale
information inherent in an image. Therefore, it is not sur-
prising that many vision models [40], [29], [30] are derived
from B-splines.

One can refer to [25], [26], [33], [46] for a more complete
and extensive exposition of the B-spline methods. For ex-
ample, its minimal support and m-refinability properties
have led to fast implementation of the scale-space algo-
rithms [27], [5], [8], [9] in computer vision. In the following
section, we will classify scale-space representations into
three types and show how B-splines are used as a flexible
tool for designing an efficient visual model according to
requirements.

3 SCALE-SPACE REPRESENTATIONS DESIGNED
FROM B-SPLINES

In this section, we focus on the fast implementation of con-
tinuous scale-space filtering and the design of dyadic scale-
space frame representation. Their relations with the com-
pact scale-space representation or compact wavelet models
are indicated.

3.1 Implementation of Continuous Scale-Space
Filtering Using B-Splines

3.1.1 Discrete Signal Approximation Using B-Spline
Bases

In practice, a discrete sets of points are given. Because
spline spaces Sh

n  provide close and stable approximations of

L2(R), it is reasonable to parameterize the discrete signal or
image using B-spline bases. We use the translated B-splines
of order n1 as bases to approximate the signal,

f x f x c k x kn

k

0 5 0 5 1 6 1 6≈ = −∑~ β 1 ,                     (17)

Fig. 1. A comparison between the Gaussian and the cubic B-spline
kernel. The Gaussian function is drawn in a solid line and the cubic
B-spline is drawn in a dotted line.
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i.e., the signal f(x) Œ L2(R) is projected into the spline space
Sn

1
1  at resolution one. In (17), we have assumed that the

sampling rate is one for convenience. We can call this pro-
cedure the generalized sampling of the original data, where
the sampling basis function is taken as the B-spline. There
are different types of approximation (see [25]). A common
approach ([25], [26]) is the direct B-spline transform where
the exact or reversible representation of a discrete signal f(k)
in the space of B-splines is obtained by imposing the inter-
polation condition: ∀ ∈ ==k f x f kx kZ,

~0 5 1 6. Thus, the coeffi-
cient c(k) can be computed as,

c k b f kn1 6 4 9 1 6= ∗
−

1

1
,                               (18)

where bn
1

14 9−  denotes the inverse of the discrete sampled B-

spline which can be computed recursively.

3.1.2 Fast Algorithm for Continuous Scale-Space
Filtering at Rational Scales

In this section, we use the B-splines to derive a filter bank
algorithm for fast implementation of continuous scale-
space filtering.

The linear scale-space representation is to make a map of
a signal at multiple scales by changing the scale parameter
continuously. In the language of wavelet transform, the
traditional scale-space approach can be regarded as a con-
tinuous wavelet transform of the signal f Œ L2,

Wf s x f t t x dt ss, ,2 7 0 5 0 5= − >ψ 0 ,                (19)

where ψ ψs s
x
sx L0 5 3 8= ∈1 2  is the scaled wavelet. Because

the geometric features of an image are characterized using
differential descriptors, y(x) is often taken as certain de-
rivative of a smooth kernel or has certain order of vanishing
moments. Under different physical meanings, various lin-
ear scale-space representations are proposed [4] where dif-
ferent kernels y are assumed. Here, we also use the B-spline
of order n2 to approximate the wavelet y(x):

ψ βx g k x kn

k

0 5 1 6 1 6= −∑ 2 .                             (20)

In the classical scale-space theory, two frequently used
multiscale edge detection filters are the famous Marr-
Hildreth operator [10] and Canny operator [12], which are
obtained by taking the first and second derivative of the
Gaussian kernel respectively. Since B-splines are good ap-
proximations of the Gaussian kernel, we shall use the de-
rivatives of B-splines instead. In such cases, the coefficients
g in (20) are the coefficients of first- and second-order dif-
ference operators respectively, i.e.,

g(1) = {1, -1}    and    g(2) = {1, -2, 1}.                (21)

Such spline wavelets are shown in Fig. 2. Using these spline
wavelets, we obtain the approximate Marr-Hildreth opera-
tor [10] and Canny operator [12], respectively. Higher order
derivatives of B-splines can detect edges with higher sin-
gularity [42] and the coefficients g are the binomial-Hermite
sequences. Explicitly, in the Fourier domain, the rth-order
difference of the B-spline of order n can be written as

$ $ $ψ ω β ω ω β ωω ω0 5 4 9 0 5 0 5 0 5= − = +e e ii r n i r n r
r

1 2 ,         (22)

which is also the rth-order derivative of the B-spline of or-
der n + r. We remark that B-splines can also efficiently ap-
proximate other kinds of wavelets, such as the generalized
edge detectors in the lt-space representation [4], and the
coefficients g can be computed numerically.

Since a real number can be approximated arbitrarily

close by a rational number s m
m= 1

2
, m1, m2 Œ Z, we take ra-

tional scale and derive a general filter bank implementation
of the scale-space representation of (19) using the m-
refinable relation (15). The cascaded implementation of (19)
with y given in (20) and f approximated by (17) is:

Wf
m
m r

m b B B c g r rn n
m
n

m
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m m m

1

2

2
11 2

2
1

1
2

2 1
2

,

,

�
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�
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∗ ∗ ∗ ∗ ∈+ +
� � �4 9 0 5 Z (23)

The derivation of this algorithm is given in Appendix A.
This algorithm extends that in [27]. If the scale is taken as
an integer, i.e., when m2 = 1, then the resulting formula is
similar to that in [27]:

Wf m r b B c g r rn n
m
n

m1
11 2

1
2

1
, ,2 7 4 90 5= ∗ ∗ ∗ ∈+ +

� Z .           (24)

The implementation of the above algorithm is illustrated in
the block diagram in Fig. 3.

In the filter bank implementation of (23), we can inter-
change the order of convolution. The result is then equiva-
lent to the discrete B-spline filtering of the difference of the
discrete sampled signal (with a down-sampling)

S m m k B B S km
n

m
n

1 2 12
1

1
2,2 71 6 1 6= ∗ ∗ ,                       (25)

where S1(k) is the signal sampling followed by difference
operation

  

Fig. 2. Two types of wavelets for extrema and zero-crossing detection.
The order of the B-spline is four.
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S k b c g kn n
m m1

11 2

2 1
1 6 4 91 6= ∗ ∗+ +

� � .                     (26)

We note that the computational complexity is mainly
due to the discrete B-spline filtering (25) which can be im-
plemented efficiently. By (4), it turns into the cascaded con-
volution with the zeroth-order of discrete B-spline and can
be implemented via the running average sum technique. If we
define such a running average operation as

R k B R ki m i1 6 1 6= ∗ −1

0
1 ,                            (27)

then it can be realized using the following iterative strategy

Ri(k) = Ri(k - 1) + Ri-1(k - 1) - Ri-1(k - m1 - 1).          (28)

Therefore, starting from the initial coefficient R0(k) = S1(k), we
can compute (25) using only the addition. Then after a down-
sampling with a factor m2, we obtain the scale-space filtering

at the rational scale m
m

1

2
. Suppose m2 is fixed, as is usually the

case in practice, the computational cost is independent of the
scale. Fig. 4 shows an example of the scale-space filtering of a
simulated signal using the above algorithm.

We record two important properties of this procedure.

•� Efficiency: In practice, m2 is usually fixed. The com-

putational complexity at each scale m
m

1

2
 is 2(N). The

computational complexity is largely due to the con-
volution with the smoothing B-spline kernel which
can be reduced by the running average sum tech-
nique. In contrast with the existing procedure based
on direct numerical integration or FFT-based
scheme, the computational complexity does not in-
crease with the increasing number of values of the
scale parameter.

•� Parallelism: The structure of the above algorithm is
parallel and independent across scales. This makes it
inexpensive to run on arrays of simple parallel proc-
essors. In other words, this can be ideally suited for
VLSI implementation.

One can recall that the above subdivision algorithm is
also similar to the à trous algorithm [48], [32] for fast com-
putation of continuous wavelet transform except with some
constraints on their filters. However, the à trous algorithm
can only compute the wavelet transform at dyadic scales.

The above algorithm can compute the wavelet transform
efficiently at any scales. As will be shown in Section 3.2, if
the scale is restricted to dyadic, the above algorithm is
similar to the à trous algorithm. However, using B-splines,
a more efficient scheme can be obtained which only needs
an addition operation.

3.1.3 Extension to 2D Images
Although the above algorithm is derived in the one-
dimensional case, it can be easily extended to two dimen-
sions. The tensor-product B-spline bn(x, y) = bn(x)bn(y) is
used as a basis to parameterize the image and approximate
the two-dimensional wavelet kernels. For example, we can
use the tensor product B-splines to approximate the Maar-
Hildreth’s LoG operator [10]:

,
2bn(x)bn(y) = yn(x)bn(y) + yn(y)bn(x),         (29)

where

ψ β β β βn n n n nx
x

x x x x0 5 0 54 9 0 5 0 5 0 5=
∂

∂
= + − + −− − −

2

2
2 2 21 2 1 .

Since this two-dimensional kernel is represented by the
separable one-dimensional B-spline bases, by performing
the above one-dimensional fast algorithm along the hori-
zontal and the vertical orientation, respectively, the LoG
operator can be computed efficiently. Fig. 5 shows such
results for Lena image at three different scales. Using the
spline technique, the computational complexity is the
same at different scales and only an addition operation is
needed.

     (a)                  (b)                                                     (c)

                   (d)                                                                 (e)

Fig. 3. Block diagram for fast realization of continuous scale-space
filtering at the rational scales. (a) Signal sampling. (b) Upsampling.
(c) Running average sum. (d) Running average sum. (e) Downsampling.

Fig. 4. Fast and parallel implementation of scale-space filtering of a
simulated signal at the scale 1.5, 2.5, 3.5, and 4.5 using the second
wavelet in Fig. 2.
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3.2 Dyadic Scale-Space Frame Representation
3.2.1 One-Dimensional Signal Representation by Its

Local Partial Derivatives at Dyadic Scales
The above continuous scale-space is too redundant for
some applications. In addition, as stated by Witkin [11], an
initial representation ought to be as compact as possible,
and its elements should correspond as closely as possible
to meaningful objects or events in the signal-forming pro-
cess. A description that characterizes a signal by its ex-
trema and those of its first few derivatives is a qualitative
description to “sketch” a function. If we sample the scale
of the above continuous scale-space as dyadic while
keeping the time variable continuous, we can obtain a
more compact scale-space representation. Moreover, such
a representation is shift invariant and therefore is suitable
for some pattern recognition applications. In particular,
using B-spline techniques efficient frame algorithms can
be designed to express the signal in terms of its local par-
tial derivatives.

We now show the relationship between this type of trans-
form and the above continuous scale-space implementation.

If we use the approximation b cn n2 1 1+ + ∗  to replace the
original signal f, and the width of the B-spline m is re-
stricted to be dyadic, say 2m, we will get a recursive relation
for the wavelet transform (19) between the dyadic scales. In
this case, (23) becomes

W f k Wf k S f g km m m
m

2 2 2
21 6 4 9 1 6= = ∗ �,              (30)

where

S f k B f km m
n

2 2
1 6 1 6= ∗ .                            (31)

It is easy to derive the two-scale relations for B m
n

2
 and S m2

.

From property (4) and the property of z-transform,
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2
0 5  is the z-transform of B km
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1 6 . We have the fol-

lowing relation
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In the time domain, it becomes
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By this relation, we can get a fast recursive implementation
of dyadic-scale space filtering,

S f k n
j S f k jm

n

n

mn n

j

m
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2
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1
2

1
2
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−

+

+

−∑ .     (35)

Or simply written as

S f S f hm m m2 2 21 1= ∗− −� ,                           (36)

where

h j n
j j nn1 6 = +�� �� ≤ ≤ ++

1
2 1

1 0 1,

is the binomial kernel.
The approximate Marr-Hildreth operator and Canny op-

erator at dyadic scales can now be computed as

W f S f gm m m
k

2 2 21 1= ∗− −�
1 5 ,                           (37)

where g(k), k = 1, 2 is the first or second order of differ-
ence operator given in (21). The recursive refinement
relation (36) and (37) can be rewritten in the z-transform
domain as

$ $ ,S f z H z S f z H z
z z

m

m

m

n

2

2

2

1

1
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1
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(38)

$ $ ,

, ,

W f z G z S f z

G z z k

m

m

m
k

k k

2

2

2

1

1

1 1 2

0 5 0 5
0 5 0 5

1 5

1 5

= �� ��
= − =

−

−

(39)

By requiring the reconstruction filter 
~
G  to satisfy the fol-

lowing perfect reconstruction condition

H z H z G z G z0 5 0 5 0 5 0 5+ =~
1,                        (40)

we can reconstruct the signal from its multiscale partial
derivatives

S f S f h W f gm m m m m
k

2 2 2 2 21− = ∗ + ∗� �
~ ,                 (41)

where ~ , ,g kk = 1 2  are the time responses of 
~
Gk  which are

given explicitly in Appendix B. Since all of these filters are

Fig. 5. Fast implementation of LoG operator at scales one, five, and seven using cubic B-spline.
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linear combinations of binomial and divided by 1
2 1n+ , using

the Pascal triangular algorithm, only the addition operation
and bit shift operation are needed. This is very suitable for
hardware implementation.

3.2.2 Image Representation by Its Local Directional
Derivatives

The tensor product B-spline basis is bn(x, y) = bn(x)bn(y). It is
interesting that we can still derive an efficient frame algo-
rithm to characterize an image from its local differential
components. A fast algorithm for the gradient case has been
proposed [42] and further refined in [34]. Now we consider
the case of the second directional derivative.

For edge detection, an approach is to detect the zero-
crossings of the second directional derivative of the
smoothed image f x yj

n∗ β
2

,2 7  along the gradient orientation

∂ ∗

∂
=

∂
∂ +

∂
∂

�
��

�
�� ∗

2

2
2

2

2

f x y

n x y
f x y

j

j

n

n
β

θ θ β
,

cos sin ,
2 74 9 2 74 9.  (42)

We can still derive a subdivision algorithm to compute
the three local partial derivative components or wavelet
transforms:

W f x y
f x y

x
f x yj

j
n

n

2

1

2

2
2

1,
,

,,2 7
2 74 9 2 7=

∂ ∗

∂
= ∗

β
ψ ,      (43)

W f x y
f x y

y
f x yj

j
n

n

2

2

2

2
2

2,
,

,,2 7
2 74 9 2 7=

∂ ∗

∂
= ∗

β
ψ ,      (44)

W f x y
f x y

x y
f x yj

j
n

n

2

3

2

2 3,
,

,,2 7
2 74 9 2 7=

∂ ∗

∂ ∂ = ∗
β

ψ ,      (45)

where the three-directional wavelet components are de-
fined in the Fourier domain as

$ , $ , ,

$ , $ , ,

$ , $ ,

,

,

,
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ψ ω ω ω ω β ω ω

n
x y x

n
x y

n
x y y

n
x y

n
x y x y

n
x y

G

G

G G

1 2

2 2

3 1 1

4 9 2 7 4 9
4 9 4 9 4 9
4 9 2 7 4 9 4 9

0 5

0 5

0 5 0 5

=

=

= (46)

where G(1) and G(2) are the transfer functions of the first- and
second-order difference operator. From these definitions,
we can obtain a recursive algorithm for the computation of
the three local partial-derivative components:

S f S f h h

W f S f g d
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                (47)

where I h g j∗ � −,2 7 2 1  represents the separable convolution of

the rows and columns of the image with the one-
dimensional filters h j� −2 1  and g j� −2 1 , respectively. The

symbol d denotes the Dirac filter whose impulse is one at

the origin and zero elsewhere. We can also reconstruct the
image from these dyadic wavelet transforms using the
following formula

S f W f g u W f u g

W f g g S f h h

j j j j j

j j j j

2 2

1 2

2 2

2 2

2

2

3 1 1

2 2 2

1 1 1

1 1

− − −

− −

= ∗ + ∗ +

∗ + ∗

� �

� �

~ , , ~

~ , ~ ,

0 5 0 5

0 5 0 5
4 9 4 9

4 9 2 7 (48)

where

u j n
j j nn1 6 = +�� �� ≤ ≤ ++

1

2
2 2 0 2 22 2 ,

is the FIR of the transfer function U(w) = H2(w). The recon-
struction formula (48) follows from the following perfect
reconstruction identity:

H H G G U

G G U G G G G

x y x x y

y y x x x y y

2 2 2 2

2 2 1 1 1 1 1

ω ω ω ω ω

ω ω ω ω ω ω ω

2 7 4 9 2 7 2 7 4 9
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+ +

+ =
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~ ~ ~

If we define the three corresponding reconstruction wavelets
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it can be shown [34] that an image f(x, y) can be represented as

f x y

W f x y W f x y W f x yj j j

n n n

j

,

, , ,, , ,

1 6
1 6 1 6 1 64 9

=

∗ + ∗ + ∗
=−∞

∞

∑ 2

1 1

2

2 2

2

3 3χ χ χ (49)

One can also notice that in the above decomposition and
reconstruction formula all the filters are binomial which
require only the addition operation. For illustration, Fig. 6
shows the above decomposition and reconstruction results
of a square image at the scales 1, 2, 4. Like the compact
wavelet decomposition [40], the above algorithms also de-
compose an image into horizontal, vertical, and diagonal
components. However, this transform has explicit physical
meaning and is shift-invariant. This can be useful for cer-
tain pattern recognition tasks.

3.2.3 Image Representations by Its Isotropic and
Multiorientational Derivative Components

One can obtain a more compact isotropic wavelet repre-
sentation of an image that is complete and efficient using
a radial B-spline as the smoothing kernel in two dimen-
sions. This representation is important because it indicates
that an image can be recovered from its multiscale LoG-
like components. The radial B-spline f(x, y) is a nonsepa-
rable function of two variables defined by its Fourier
transform

$ , $φ ω ω β ρx y
n4 9 1 6=                               (50)

where the radius
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ρ
ω ω π

=
+�

�
��

�

�
��min ,

x y
2 2

2 2

and the wavelet is defined by

$ , $ψ ω ω ρ φ ρx y4 9 1 6= 2 .                              (51)

One may notice that such a wavelet is isotropic and LoG-
like, which resembles the human visual system. With these
definitions, we still have a filter bank implementation of the
decomposition and reconstruction. We omit the details and
just give the decomposition formulas,

S f S f h

W f S f g

j j j

j j j

r

r
2 2 2

2 2 2

1 1

1 1

= ∗

= ∗

%
&K
'K

− −

− −

�
�

                             (52)

where hr, gr are the 2D nonseparable radial filters corre-
sponding to h and g, respectively. In this decomposition,

two components are obtained at each resolution. By de-
signing the filter ~gr  from the relation (40), the correspond-

ing 2D nonseparable radial filter ~gr  can be computed nu-

merically via its Fourier transform 
~
Gr . Then the recon-

struction formula similar to (41) can be obtained. Also, it is
easy to check using the same arguments as in the 1D case
that an image can be represented as [34]:

f x y W f x yj j

j

, ,2 7 2 7= ∗∑ 2 2
χ                       (53)

where χ
2 j  is the 2D reconstruction wavelet defined by

$
~ $χ ρ ρ φ ρ1 6 1 6 1 6= Gr .

One can build a wavelet representation having as many
orientation tunings as desired by using nonseparable
wavelet bases. A generalized Pythagorean theorem has
been proved to decompose an image into a finite number of
equally spaced angles [34]:

Fig. 6. Representation of a square image by its second order of directional derivative components at dyadic scales. In the top row is the
simulated square image and in the bottom row is the reconstructed image. Between them are the directional decompositions along the vertical
and diagonal orientations at dyadic scales one, two, and four, respectively.
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If we multiply the above isotropic wavelet (51) by the an-
gular part Hk(q), 0 £ k £ n - 1, n Œ Z, we can extract the ori-
entational information in the dyadic scale-space tuned to n
orientations [34]:

$ , $ ,ψ ρ θ ψ ρ θk kH k n2 7 1 6 0 5= ≤ ≤ −0 1.             (54)

Such wavelets can be called orientation tuned LoG-like fil-
ters. An image can be represented by its multiscale and
multiorientational components,

f x y W f x yj j
k k

jk

n

, ,2 7 4 92 7= ∗
=−∞

∞

=

−

∑∑ 2 2
0

1

χ ,                (55)

where χ
2 j
k  is the oriented wavelet for reconstruction. Simi-

larly, the pyramid-like filter bank implementation of such a
representation can be obtained as follows,
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Therefore, through such an approach we can analyze the
directional information of an image feature at a certain an-
gle in dyadic scale space. In Fig. 7, we show a multiscale
orientational decomposition and reconstruction, where the
orientation number is chosen as three.

3.2.4 Some Comments on the Application of Dyadic
Scale-Space Representation

The dyadic scale-space frame representation from B-spline
gives rise to many applications, since it provides an in-
vertible, translation-invariant, and pyramid-like compact
representation of a signal. One example is the fingerprint-
based compression [41] by combining with other tech-
niques. Many image features such as ridges, corners,
blobs, and junctions are usually characterized by local
differential descriptors [3]. It is usually enough to consider
their behaviors only at dyadic scales. The proposed algo-
rithms provide efficient ways and are easy for hardware
implementation. For example, in multiscale shape repre-
sentation, usually the computation of the curvature func-
tion is treated in continuous scales [50]. In fact, sometimes
it is enough to consider its behavior only at the dyadic
scales [49]. We have used the above algorithms to effi-
ciently compute the geometric descriptors for multiscale
shape analysis [35].

3.3 Compact Scale-Space Representation
While the dyadic scale-space frame approach provides a
more compact representation, it is still over-complete for
signal representation. For image compression applications,
compact representation is preferred. In order to give a com-
plete picture, we mention briefly the discrete wavelet trans-
form. While the scale-space technique has existed for a long

time, it was the orthogonal multiresolution representation
proposed by Mallat [40] that makes the mathematical
structure of the image more explicit. This is an extension or
refinement of traditional scale-space theory. This approach
restricts the scale to dyadic and samples the time variable.
The starting point is to orthogonalize the B-spline basis,
and then decompose the signal approximated at a fine
scale-space S i

n

2 1+  into a coarser scale space S i
n

2
 by imposing

the orthogonal condition

S S Wi i i
n n n

2 2 21+ = ⊕ .                                 (57)

The detail irregular information of the signal is con-
tained in the subspace W i

n

2
. This defines an orthogonal

multiscale representation. After the B-spline basis is con-
verted into an orthogonal basis, the two-scale relation
still exists which results in an efficient pyramidal algo-
rithm. The perfect reconstruction condition (40) still ex-
ists. However, additional conditions on the filters H, G,
~
G  are imposed to ensure the orthogonality. There are
several ways to achieve a compact multiresolution by
imposing the biorthogonal instead of the orthogonal
condition (57). All these compact multiresolutions are
related to B-splines. A detailed study can be found in
[30], [36]. We remark that these wavelet filters can be
factored into B-spline filters and hence can be imple-
mented more efficiently [36].

From the above analysis, it is easy to see that the dyadic
scale-space frame representation lies between the continu-
ous scale-space and the compact representation. Which
kind of representation to select depends on the problem at
hand. For example, in multiscale feature extraction, one
may compute the differential operation either at the con-
tinuous scales or only dyadic scales. Therefore, the continu-
ous or dyadic scale-space frame representation is more use-
ful. However, for compression applications, the compact
multiresolution is the favorite.

3.4 Relations Between the Existing Scale-Space
Algorithms in Computer Vision

Before the appearance of wavelets, the B-spline technique
has been widely used in computer vision. Examples include
Wells [5], Burt [6], [7], and Ferrari et al. [8], [9]. We shall
show that under certain circumstances, they are either
equivalent or the special cases of the general algorithm
given in Section 3.

3.4.1 Relation to Ferrari et al.’s Method
Ferrari et al. [8], [9] have proposed B-spline functions to
realize the 2D image filtering recursively. Their idea is to
use B-splines as the filter kernel:

g m n f k l h m k n l
lk

, , ,2 7 2 7 2 7= − −∑∑ ,             (58)

h m n h kM lN m kM m kMs

l

q

k

p
t, $ ,2 7 2 7 1 6 1 6= − −

==
∑∑ β β

11

,   (59)

where $ ,h kM lN2 7  are the interpolation coefficients at the
knots (kM, lN), which can be computed using the usual
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method. Then using the properties of discrete B-spline, they
derive the recursive 2D image filtering. In this way, the
computational load can be greatly reduced. Therefore, this
approach is a special case of our proposed algorithm for
continuous scale-space filtering.

3.4.2 Relation to Wells’ Method
In [5], Wells proposed an approach for efficient synthesis
of Gaussian filters by cascaded uniform filters. It is easy
to show that his method is equivalent to using cascaded
zeroth discrete B-spline to approximate the Gaussian
kernel. By this approach, the cascaded convolution with
a zeroth-degree B-spline (uniform filters) can be realized

by running the average sum technique as discussed
above. Obviously, his method is a special case of our re-
cursive algorithm.

3.4.3 Relation to Burt’s Laplacian Pyramid Algorithm
Burt [6], [7] has introduced the following low-pass filter for
the generation of Gaussian or Laplacian pyramids

w(0) = a,   w(1) = w(-1) = 1/4,   w(2) = w(-2) = 1/4 - a/2. (60)

If the parameter a is taken as a = 3/8, then w(j) can be re-
written as

w j j1 6 = +
�� ��

1
4

4
2 .

Fig. 7. Multiorientational decomposition and reconstruction at dyadic scales. Here, the orientation number is taken as three. In the top row is the
simulated image and in the bottom row is the reconstructed image. Between them are the multiorientational decompositions at dyadic scales one,
two, and four, respectively. Using the proposed algorithm, an image can be decomposed into any orientation.
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This is equivalent to the special case of n = 3 in (35). In this
case, the filter is also equivalent to the operator used for the
generation of the dual cubic spline pyramid representation
as discussed in [29].

4 EDGE PATTERNS IN THE B-SPLINE BASED SCALE-
SPACE

The study of edge patterns in scale-space is very important
for many applications. Much work has been done on the
study of edge patterns in the Gaussian based scale-space. In
this section, we want to investigate the edge behaviors in
the B-spline based scale-space.

It is well-known that there exists a similar “uncer-
tainty principle” between good edge localization and
noise removal. At finer scale, better localization can be
achieved with the cost of noise pollution, and vice versa.
Many researchers have studied the localization of op-
erators based on Gaussian kernel in scale-space. Berzins
[24] studied the accuracy of Laplacian operator, Shah et
al. [23] considered the localization of pulse and staircase
edge models, Clark [21] investigated the phantom edges
in a scale-space. For corner detection, Asada and Brady
[50], Chin [51] have also considered the behavior of edge
models. We found that their derivations are all based on
Gaussian kernel. It is necessary to study the behavior of
various edge models in B-spline based scale-space which
give some a priori knowledge of various patterns in an
image.

Here, we present a more general proof with the assump-
tion that the primitive q in the definition ψ θ1 x xd

dx0 5 0 5=  is

symmetric and with compact support [-w/2, w/2] and its
derivatives have the shape as in Fig. 2. In practice, the sup-
port of the Gaussian kernel is usually truncated to a finite
interval. Obviously, the truncated Gaussian and B-spline
kernel are included in this assumption. We shall show that
these edge models have the same behaviors as that derived
from the traditional Gaussian kernel. First, we adopt the
following accurate definition of an edge [21].

DEFINITION 1. A point x0 is called an authentic edge of a signal
f(x), if |W1f(s, x0)| is maxima, or,

W f s x
x

W f s x1
0

2

2
1

0 0, ,2 7 2 7⋅
∂

∂
< .

Otherwise, it will be a phantom edge.

We shall use W1f and W2f to denote two types of
wavelet transform where the wavelets are the first and
second derivatives of q, respectively. Clark [21] analyzed
these two types of detection. Generally, zero-crossing
detection is equivalent to the extrema detection. How-
ever, extrema detection includes both maxima and
minima detection. Only the edge point detected by local
maxima belongs to authentic edge and the edge point
detected by local minima corresponds to phantom edge.
It is shown that zero-crossing edge detection algorithms
can produce edges which do not correspond to signifi-
cant image intensity changes. Such edges are called
phantom or spurious.

Now, as an example we study the behavior of staircase
edge model in scale-space. The staircase edge model can be
represented as

f(x) =A1u(x) + A2u(x - d),    x Œ R          (61)

where A1, A2 represent the amplitudes of the edge, d is the
distance between the two abrupt changes at x = 0 and x = d,
u(x) is the step function,

u x x
x0 5 = ≥

<
%&'

1 0
0 0

if
if                             (62)

whose derivative in the distributional sense is d(x). Hence,
from (19),
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i.e., the wavelet transform is just the sum of two dilated
smoothing functions. At the location x = 0,
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Therefore, only at a small scale s d
w< 2 , the location of edge

at x = 0 can be detected exactly. Similarly, at the location x = d,
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i.e., the location of edge at x = d can only be detected exactly
at a small scale s d

w< 2 . For large scale, it will spread like a
cone in scale-space and will be influenced by another cone
at x = 0. As a consequence, the edge location will be mis-
detected due to the superposition of two diffused cones.
One may deduce that there will be another point x0 such

that ∂
∂ = =x x xW f s x1

0
0,2 7  due to different parities in the val-

ues of ∂
∂x W f s x1 ,2 7  at the location of x = 0 and x = d. How-

ever, it is easy to find such a point corresponding to a local
minimum, which means it is a phantom edge point. This
cannot be distinguished from others by zero-crossing de-
tection. Fig. 8 illustrates the behavior of this type of edge in
the scale-space. That was why local maxima is preferred for
edge detection in [41], [42].

Similarly, for zero-crossing detection of W2f(s, x), we can
draw the same conclusion. In the above analysis, we only
consider one type of edge model. Other types of edges such
as the step, pulse, ramp, roof can be treated in a similar way
[34]. Also, our derivation is based on a more general as-
sumption on the kernels which include both the truncated
Gaussian and the B-spline.
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5 DISCUSSIONS ON THE PROPERTIES OF THE
B-SPLINE-BASED SCALE-SPACE

We now discuss the advantages and properties of the B-
spline based scale-space.

•� Efficiency: It is a basic requirement that any algo-
rithm should be able to capture and process the
meaningful information contained in the signal as fast
as possible. Obviously, the major weakness of the tra-
ditional Gaussian-based scale-space is the lack of effi-
cient algorithms. On the contrary, B-spline techniques
facilitate computational efficiency. The computational
complexity is scale independent. Moreover, in con-
trast with the scale-space based on the Gaussian ker-
nel, the B-spline representation of a signal is deter-
mined directly on an initial discrete set of points,
avoiding problems caused by discretization in con-
tinuous scale-space. B-splines also have been used as
smoothing windows for efficient computation of Ga-
bor transform to extract frequency information [31].

•� Parallelism: Data parallelism is common in computer
vision which arises from the nature of an image. As
Koendrink [1] pointed out, it seems clear enough that
visual perception treats images on several levels of
resolution simultaneously and that this fact must be
important for the study of perception. In this paper,
efficient parallel structure of an image is exhibited us-
ing B-spline techniques. It may provide a good inter-
pretation of the human visual system which can proc-
ess the hierarchical information simultaneously. B-
splines provide a flexible way to process the multiscale
information using either coarse-to-fine strategy or in
parallel. This is also easy for hardware implementation.

•� Completeness and invertibility: We usually use the
zero-crossings or the local extrema as meaningful de-
scription of a signal. It is clearly important, therefore,
to characterize in what sense the information in an
image or a signal is captured by these primal sketches
uniquely. For a Gaussian-based scale-space, the com-
pleteness property is guaranteed by the fingerprint
theorem [13]: The map of the zero crossing across
scales determines the signal uniquely for almost all
signals in the absence of noise. Such results have
theoretical interest in that they answer the question of
what information is conveyed by the zero and level
crossings of multiscale Gaussian-filtered signals. Pog-
gio and Yuille’s proof is heavily dependent on the
Gaussian kernel and they conjectured that under cer-
tain conditions, Gaussian kernel is necessary for fin-
gerprints theorem to be true. However, later Wu and
Xie [17] gave a negative answer and presented a more
general proof, which states that the fingerprint theo-
rem holds for any symmetry kernel. Therefore, the
fingerprint theorem is also true in the case of B-
splines for continuous scale-space representation.

Differential operators have also been widely used
for multiscale geometric description of images, but it
has not been clear that such representations are in-
vertible. As shown in the paper, using B-splines, effi-
cient frame algorithms can be designed to express an
image from its local derivatives at dyadic scales.

•� Compactness: For compression application, we re-
quire a representation to be as compact as possible so
that an image can be represented by the correspond-
ing primitives using less storage. In [13], Poggio and
Yuille conjectured that the fingerprints are redundant
and the appropriate constraints derived from the pro-
cess underlying signal generation should be used to
characterize how to collapse the fingerprints into a
more compact representation. In the paper, the more
compact dyadic scale-space representations are pro-
posed. We can use such representation for compres-
sion applications by combining with other techniques.

•� Causality: Since edge points are important features, it
is natural to require that no new features are created
as the scale increases. A multiscale feature-detection
method that does not introduce new features as the
scale increases is said to possess the property of cau-
sality. Causality is in fact equivalent to the maximum
principle in the theory of parabolic differential

Fig. 8. The scale-space behavior of the staircase edge model. The top
row is the staircase edge model. The second and third rows are
wavelet transforms using the wavelets in Fig. 2. The symbol * denotes
the phantom edge, and o denotes the authentic edges. The two
authentic edge points can be localized using maxima detection, and
they cannot be distinguished from the phantom edge by the zero-
crossing detection. The bottom row is the continuous scale-space map
of the staircase edge using the first wavelet by continuously changing
the scale along a log axis.
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equations [18]. The Gaussian scale-space is governed
by the heat-diffusion equation and therefore possesses
the causality property. Such continuous causality
property of the Gaussian kernel is not shared by the
B-spline. However in the discrete sense, Aissen et al.
[53] proved that for a discrete scale-space kernel h, the
number of local extrema or zero-crossings in fout = h *
fin does not exceed the number of local extrema or
zero-crossings in fin if and only if its generating
function

H z h n zn

n

0 5 0 5=
=−∞

∞

∑
is of the form

H z cz e
z z

z z
k q z q z i i

i ii

0 5 2 74 9
2 74 9

4 9
=

+ +

− −
−

− +
−

−
=

∞

∏1
1

1
1 1

1 1

1

1
1

α δ

β γ
,     (66)

where

c > 0, q-1, q1, ai, bi, gi, di ≥ 0, bi, gi < 1,               (67)

and

α β γ δi i i i
i

+ + + < ∞
=

∞

∑ 2 7
1

.                         (68)

It is easy to verify that the discrete B-spline kernel in
(25) satisfies such a condition. Therefore, the causality
property still holds for discrete B-spline filtering in
the discrete sense. The number of local extrema or
zero-crossings of the derivative of the discrete signal
does not increase after running average sum. This
justifies the use of the discrete smoothing kernel in
practice.

•� Orientation: Orientation analysis is an important task
in early vision and image processing, for example, in
texture analysis [44]. The Laplacian multiresolution
[6] does not introduce any spatial orientation selec-
tivity into the decomposition process. Daugman [44]
showed that these impulse responses can be ap-
proximated by Gaussian windows modulated with a
wave. It is meaningful to combine both the orienta-
tion analysis and the scale feature [43]. In this paper,
an efficient pyramid-like algorithm is designed using
the B-spline technique to analyze and synthesize an
image from its multiorientational information at any
number of angles in the dyadic scale-space. Note that
the usual wavelet transforms can decompose an im-
age in only three orientations.

There are other advantages of the B-spline kernel. In
the time-frequency analysis, the Gaussian kernel is the
optimal function that minimizes the uncertainty principle.
The cubic B-spline is already a good approximation to the
Gaussian function [28], see also Fig. 1. As the order ap-
proaches infinity, the B-splines converge to the Gaussian
in both the time and frequency domain. Moreover, a B-
spline resembles the response of receptive field [22] and is
also suitable for modeling the human visual system. Edge
detection is an ill-posed problem. From the view point of
the regularization theory, cubic spline is proved optimal.

The connection between the regularized edge detection
and the smoothing spline problem proposed by Schoen-
berg, Reinsh in statistics is noted by Poggio et al. [20]. It
was shown that the cubic B-spline rather than the Gaus-
sian kernel is optimal for edge detection.

B-splines are the shortest basis functions that provide a
stable multiresolution analysis of a signal [36], [33]. This
explains why many wavelet models of a vision [40], [28],
[45], [46], [47], [37] are derived from B-splines [33], [36].
For the derivative operations, the B-spline approach is
very intrinsic which elucidates the relationship between
derivative and difference which are usually characterized
by the two-scale difference relations. B-splines play an
important role to bridge the traditional scale-space theory,
dyadic scale-space frame, and compact multiresolution
representation.

6 CONCLUSIONS

This paper describes a B-spline based visual model. For a
long time, the Gaussian kernel has been commonly used in
computer vision. In this paper, a general framework for
scale-space representation using B-splines is presented. In
particular, the design of two types of scale-space represen-
tations is given in detail. A fast algorithm for continuous
scale-space filtering is proposed. In the case of dyadic scale,
some efficient frame algorithms are designed to express the
image from its local differential descriptors. The intrinsic
relationship with the compact wavelet models is also indi-
cated. Several algorithms are proved to be special cases of
our proposed algorithm.

To our knowledge, the scale-space property based on B-
splines has not been fully studied before. We examine the
property of B-spline based scale-space in parallel with the
Gaussian kernel. Our results indicate that B-splines possess
almost the same properties as the Gaussian kernel. Moreo-
ver, the B-spline kernels outperform the Gaussian in many
aspects, notably, computational efficiency.

APPENDIX A: DERIVATION OF FAST IMPLEMENTATION
OF CONTINUOUS WAVELET TRANSFORM AT
RATIONAL SCALES

We use the m-scale relation (15) to derive the filter bank
implementation of scale-space filtering at rational scales.
From (19), (20), (17),
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Using the m-refinable relation (15),
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where the following property of B-spline is used [25]:

β β βn n n nm t k m t l m m t k l2 1 1 2
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Substituting (70) into (69) gives
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If we take t = r Œ Z, then the above formula can be written as,
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If we take t rr
m= ∈

2
, Z , we get an interpolation formula,

and the size of the transformed data is m2 times the size of
the original sampling signal data:
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APPENDIX B: DERIVATION OF THE RECONSTRUCTION
FILTER RESPONSES

For the first-order difference G(z) = z - 1, the perfect recon-
struction condition (40) gives
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and the corresponding FIR is
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For the second-order difference G(z) = z2 - 2z + 1, (40) gives
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and the corresponding FIR is
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